İçeriğe geç

Python ile Project Euler Soru 21 Çözümü

Soru 21:

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Evaluate the sum of all the amicable numbers under 10000.


import math

def tamBolenleriBul(n):
    tam_bolenler = [1]
    for i in range(2, int(math.sqrt(n) + 1)):
        if n % i == 0:
            yield i
            if i*i != n:
                tam_bolenler.append(int(n / i))
    for bolenler in reversed(tam_bolenler):
        yield bolenler
dizi = {}
i = 0
while i<=10000:
    i+=1
    dizi[str(i)] = sum(tamBolenleriBul(i))

toplam = 0
for i, s in dizi.items():
    try:
        if int(i) == dizi[str(s)] and int(i) != s:
            toplam += (int(i)+s)
            dizi[i]=-1
    except:
        pass

print("Toplam :", toplam)
2.064 Gösterim  
Tarih:algoritmalar ve programlamaya girişprogramlamaProject Euler

İlk Yorumu Siz Yapın

Bir cevap yazın

E-posta hesabınız yayımlanmayacak.

This site uses Akismet to reduce spam. Learn how your comment data is processed.