Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
import math def tamBolenleriBul(n): tam_bolenler = [1] for i in range(2, int(math.sqrt(n) + 1)): if n % i == 0: yield i if i*i != n: tam_bolenler.append(int(n / i)) for bolenler in reversed(tam_bolenler): yield bolenler dizi = {} i = 0 while i<=10000: i+=1 dizi[str(i)] = sum(tamBolenleriBul(i)) toplam = 0 for i, s in dizi.items(): try: if int(i) == dizi[str(s)] and int(i) != s: toplam += (int(i)+s) dizi[i]=-1 except: pass print("Toplam :", toplam)
2.171 Gösterim
İlk Yorumu Siz Yapın