Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
import math
def tamBolenleriBul(n):
tam_bolenler = [1]
for i in range(2, int(math.sqrt(n) + 1)):
if n % i == 0:
yield i
if i*i != n:
tam_bolenler.append(int(n / i))
for bolenler in reversed(tam_bolenler):
yield bolenler
dizi = {}
i = 0
while i<=10000:
i+=1
dizi[str(i)] = sum(tamBolenleriBul(i))
toplam = 0
for i, s in dizi.items():
try:
if int(i) == dizi[str(s)] and int(i) != s:
toplam += (int(i)+s)
dizi[i]=-1
except:
pass
print("Toplam :", toplam)
2.728 Gösterim

İlk Yorumu Siz Yapın