The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
# Project euler soru 12 -> cevap: 76576500 def tamBölenleriniBul(sayı): sayac = 2 yeniSayı = int(sayı/2)+1 for i in range(2,yeniSayı): if sayı%i == 0: sayac+=1 return sayac ucgensayi = 1 sayac = 2 while True: ucgensayi+=sayac sayac+=1 if ucgensayi%2!=0 or ucgensayi%5!=0: continue print(ucgensayi) if tamBölenleriniBul(ucgensayi)>500: print("Sayı =", ucgensayi) break
1.303 Gösterim
İlk Yorumu Siz Yapın