The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
# Project euler soru 12 -> cevap: 76576500
def tamBölenleriniBul(sayı):
sayac = 2
yeniSayı = int(sayı/2)+1
for i in range(2,yeniSayı):
if sayı%i == 0:
sayac+=1
return sayac
ucgensayi = 1
sayac = 2
while True:
ucgensayi+=sayac
sayac+=1
if ucgensayi%2!=0 or ucgensayi%5!=0:
continue
print(ucgensayi)
if tamBölenleriniBul(ucgensayi)>500:
print("Sayı =", ucgensayi)
break
1.712 Gösterim

İlk Yorumu Siz Yapın